et
VA

s
£ 7 1T % NN
International
A W,
N P ®

O
ST

SR Intarnetional

PRACTICAL NATURAL-LANGUAGE PROCESSING BY COMPUTER

Technical Note 251

October 1981

By: Robert C. Moore
Artificial Intelligence Center
Computer Science and Technology Division

SRI Project 1605

This paper is based on a presentation made at the
Pergamon Infotech conference "Programming: New
Directions," London, England, June 15-17, 1981.

Preparation of this paper was supported by the Defense
Advanced Research Projects Agency under Contract
NO0Q039-80-C-0645 with the Naval Electronic Systems
Command .,

333 Ravenswood Ave. » Menlo Park, CA 94025
i415) 326-6200 » TWX: 910-373-2046 » Telex: 334-4386

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
OCT 1981 2. REPORT TYPE 00-10-1981 to 00-10-1981
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Practical Natural-L anguage Processing by Computer £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 34
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

This paper describes the state of the art in practical computer
systems for natural-language processing. We first consider why one
would want to use natural language to communicate with computers at all,
looking at both general issues and speclfic applications. Next we
examine what 1t really means for a system to have a natural-language
capabllity. This is followed by a discussion of some major limitations
of current technology. The bulk of the paper is devoted to looking in
detall at a single application of natural-language processing: database
retrieval by natural-language query. We lay out an overall system
architecture, explaining what types of processing and information are
required. Then we lock at two general classes of systems, special-
purpose and general-purpose, explaining how they differ and their
relative advantages and disadvantages. Afterwards we point out some
remaining problems that will require additional basic research. Finally
we conclude by discussing when language—processing technology at varicus
levels of capability is likely to be commercially practical, and what it

may cost to develop and use applications of that technology.

ii

I INTRODUCTION

Is communication with computers 1in natural languages, such as
English or French, a near-term, practical possibility? Computer
professionals not directly involved with computational linguistics may
well react to such a suggestion with skepticlsm. Since the 1950s there
has been no shortage of academic entrepreneurs willing to proclaim that
"machine translation" or "story understanding™ is just around the
corner, but the reality has always fallen short of the promise.
. Nonetheless, 1t 1s my belief that natural-language processing 1s now
crossing the threshold from being simply a laboratory curiosity to

functioning as a practical tool for man—machine communication.

Before making a "guided tour" of the possibilities and problems of
natural-language processing by computer, we should first ask whether the
trip 1s worth taking. Is there really anything to be gained by using
natural language to talk to computers? I belleve there are many reasons
the answer to thils question 1is "ves," but I will focus on one that to me
seems particularly important--the need overcome the '"computer mystique"
that makes many potentlal computer users reluctant to take advantage of

the possibilities open to them.

It has almost become conventlional wisdom that we are living in the
midst of an Informatlion revolution whose 1mpact on soclety will be as
great as the agricultural and industrial revolutions that preceded 1it.
Whether or not this overstates the case, 1t 1is clear that the
communication and processing of information play a far greater role in
soclety than ever before, and that the use of computers 1s central to
this phenomenon. Still, countless opportunities for effective
application of computer technology are lost because of the high personal
cost of learning how to make the computer do what one wants, or worse

yet, fear that one will be defeated by the complexity of the task.

I believe that making 1t possible to interact with computers in
natural language would overcome much of the resistance to their use. A
formal language, no matter how well designed, will seem intimldating to
many novices; a system that accepts natural language is much more likely
to be percelved as "user-friendly." Moreover, even sophisticated
computer users often avoid using a new system because learning to use it
requires more effort than performing the task at hand one more time
without 1t. It will always be neccessary for users to make an
investment in learning what a system Is capable of doing, but the use of
natural language could minimize the cost of learning how to make the

system do it.

I foresee at least two roles nmatural language could play in making
systems easler to learn. First, it could enable casual users to make
more sophlsticated use of complex systems. At present, beling a casual
user of a system often means knowing only a few of the commands the
system can accept and, hence, belng able to utilize only a few of the
system’s capabllities. Permitting natural-language Input would allow
such a user access to more advanced capabillitles of a system without his
having to know the exact formats of commands. A second role for
natural-language interactlon would be to ease the transition from novice
to expert, by having the system show the user the abbreviated form of

the natural-language expressions he inputs.

To 11lustrate these possibllites, conslder the problem of learning
to use a sophisticated text editor, which may have dozens of commands
expressed by one or two (not always mnemonic) characters. This makes
staggering demands on a new user’s memory. Imagine, though, a text
editor with a speclal "natural-language mode" that would allow the user
to say "go back to the previous paragraph," or "replace every occurrence

" An expert user would never

of “thus’ on this page with “therefore.’
want so verbose a form, but it would enable a novice to meet his
lmmediate need without pouring over a manual wondering whether to look

" "substitute," or '"change." Furthermore, if the system

under '"'replacae,
not only executed the command but also displayed the abbreviated form,

the novice would soon become an expert.

This example can obviously be generalized to many other types of
systems. Any system that, like a text editor, has a complex command set
and is used interactively is a plausible candidate. Electronic mail
systems, file handlers, display managers, interactive query systems, and
even the command level of an interactive operating system (on a time-
shared or personal machine) could benefit from a natural-language input
mode as described above. Of these épplications, only natural-language
querying of formatted databases has been extensively explored, but the
capabilities required in the other areas mentioned should not be
essentially different. A step beyond this would be an "intelligent
tutor"” that responds to direct questions about the use of a system,
perhaps giving alternative ways of performing some task and explaining
the trade—offs involved. The language-processing problems would be much
the same as in the other applications, there being little difference

between the command "Copy this file to my directory,”" and the question

"How do I copy this file to my directory?"

IT WHEN IS LANGUAGE NATURAL?

How great a range of language would a system really have to accept
to achieve these ends? We have been using the term "natural language"
as if it were an all-or-nothing phenomenon, but there are many levels of
performance that might be described as providing a natural-language
capability. It 1is clearly not sufficient to define what is sometimes
called an "English~like language." This term usually refers to what is
in reality a purely formal language dressed up in a syntax that loocks
like English. The point is that it does little good to coat the formal
command "Print salary Jones" with syntactic¢ sugar like "the" and "of,"
if the system cannnot also understand "What is Jones’s salary?" 'How
much does Jones earn?” and many other forms in which the question may
be phrased. If only one form is acceptable, there is just as much to
learn as with any other formal language. The similarity to natural
language may be of some mnemonic value, but that is all. On the other
hand, if we insist that a system accept anything a person can understand

before considering it usable, we still have a long time to wailt.

What is needed is for the system to accept sufficiently many
straightforwvard expressions of the user’s intentions to avoid
frustration. In practice thils means understanding mest inputs on the
first try and a majority of the rest with one or two rephrasings.
Experiencé with the LADDER database retrieval system developed at SRI
International suggests that this 1s now feasible. Outside users of the
system have quickly attained acceptance rates of 80%Z or better, with
most of the rejectlons being on queries that exceed the capabilities of
the '"back-end" database system and that, consequently, the natural-

language processor was never intended to handle.

IIT LIMITATIONS

We will shortly be looking in detall at how natural-language
processing systems actually work, but two broad constraints on the
current technology need to be mentioned first. One of these is that the
domaln of discourse-—~what is being talked about—-must be restricted. It
turns out that one must know far more than just the rules of language to
interpret natural-language expressions; one must know a lot about the
world as well. Frequently the rules of language will permit many

" of a single sentence. Knowing

syntactic interpretations, or "parsings,’
what makes sense in terms of the domain belng discussed 1is necessary to
determine which interpretation 1s correct. One famous example of this
1s the sentence, "Time flies like an arrow." Most English speakers
would perceive as the only interpretation of this sentence a simile
about the passage of time, but there are other possible interpretations

' and the command

parallel to the assertion "Fruit flies like bananas,’
"Time race cars lilke a stopwatch." We know that there are no such
things as '"time flies" and, even 1f there were, they could not eat
arrows, and that arrows cannot be used to time anything, including
flies. It 1s apparently this knowledge that makes us blind to the

alternative interpretations.

It is no accldent, therefore, that all the applications of natural—
language ﬁrocessing mentioned above involve attempts by a person to get
a particular computer system to do something, as this 1s an excellent
way to limit what 1s talked about to manageable proportions.
Unrestricted dialogue remains as elusive as ever. Even 1f we knew how
to provide a computer with all the knowledge it needed in a form it
could use (which we do not), the task of putting it all in would be so
great as to be totally impractical. This fact bodes 111 for a number of
applications of natural-language processing that would be highly

desirable, including most of those that require dealing with pre-

existing texts.

The most obvious application that falls into thils class 1s
automated translation from one natural language to another. This was
the dream that gave computational linguistics 1ts start over twenty
years ago, but the extensive knowledge of the world that a competent
translator must have remalns a fundamental obstacle. There is some hope
for useful results 1f the subject 1s sufficlently restricted--
particularly to a narrow technical field--but a system that can

translate wire-service news dispatches 1s as far away as ever.

The same problem plagues applications in the information sclences:
information retrieval from text databases, document retrieval by
content, and automatic abstracting. The sort of thorough syntactic and
semantic analysls necessary for anything that could be called '"text
understanding” 1is slmply impractical. More limited techniques such as
keyword matching have some utility, but they are inevitably subject to
gross errors. For example, in one case a system designed to scan the
wire services for storles about natural disasters retrieved an item

about Congressman Danlel Flood of Pennsylvania.*

The other major limitation of current technology 1s that natural-
language input must be presented in computer-readable form; e.g., typed
at a terminal. Speech input is not yet practical. It is possible to
recognize isolated words or short phrases, chosen from a restricted
vocabulary, but transcribing continuous speech—-without distinct pauses
between wWords—=-is much more difficult. There 1is at least one
experimental system [l] that recognizes continuocus speech in close to
real time, but the speaker must confine himself to such a highly
restricted subset of English that it can be considered, at best, an
"English-like" language in the sense discussed in the preceding section.
At the current state of the art, therefore, speech input in relatively
unconstrained natural language 1s possible only if the speaker is

willing to talk like

—— et o o g et

* Whether Congressman Flood objected to being classified as a natural
disaster is unrecorded.

"What | is | the | salary | of | Jones?"

Computer recognition of fluent, continuous speech will require a much
deeper understanding of the acoustics of speech than we currently

pPOSsess.

IV DATABASE RETRIEVAL BY NATURAL-LANGUAGE QUERY

A. Simplifying Database Retrieval

The application of natural-language processing most extensively
pursued to date has been interactive retrieval of informaticon from
formatted databases. A number of systems have been built for this
purpose, but the most comprehensive is probably the LADDER system
developed at the Artificial Intelligence Center of SRI International
[2] [3]. This system and its descendants are the models on which this

* paper is based.

Database retrieval is well-suited to natural language. Restricting
discourse to the information in a database creates the kind of closed
domain that is required, and natural language is a much more convenient
medium than a formal query language for expressing ﬁany types of
requests. Suppose we have a corporate database containing a DEPARTMENT
file, among whose fields are DEPT NAME and MANAGER. If we want to know
who manages the sales department, a typical database management system

would require us to write a Erogram:*

OPEN FILE DEPARTMENT;
FIND FIRST DEPARTMENT RECORD;
10 IF NO-RECORD GO TO 30;
IF DEPARTMENT-DEPT NAME NOT-EQUAL ‘SALES” GO TO 20;
PRINT DEPARTMENT-MANAGER;
20 FIND NEXT DEPARTMENT RECORD;
GO TO 10;
30 CLOSE FILE DEPARTMENT;
RETURN;
END;

A nonprocedural, high-level query language would let us express this

much more simply:

——— e e .

* This program is a simplified version of what would be required by the
DBMS-20 database management system that runs on DECSYSTEM=-20 computers.

8

FOR EACH X IN DEPARTMENT FILE
WITH DEPT NAME.X = ‘SALES”
RETURN MANAGER.X

but this is still a formal language whose conventions must be followed
explicitly. It is far simpler to just ask: "Who manages the sales

department?”

B. System Architecture

Figure 1 shows the overall structure of a hypothetical natural-
language database query system. The major decomposition is between the
linguistic system, whose task is to determine what information is
requested, and the data access system, whose task is to determine how to
obtain that information from the database (via a conventional database

management system),

The linguistic system contains a language eXecutive that builds a
formal representation of the meaning of a natural-language query {a
"semantic representation'"). To do this, it draws upon three sources of
linguistic knowledge-—syntactic rTules, semantic rules, and a lexicon—-—

plus a model of the domain of discourse.

Syntactic {or grammatical) rules govern the way words combine into
phrases and phrases into sentences. It is necessary to understand how a
sentence 1s syntactically organized to interpret its meaning correctly.

Consider the pair of sentences:

John is managing director.
John is managing directors.

In the first sentence, 'managing director" is a single unit, which

presumably refers to John’s job title. In the second sentence, however,

() U |

the rules of the language force us to group managing with "is" rather

than "directors,"” so we get the interpretation that directors are what

John is managing.

NATURAL-LANGUAGE
QUERY

LINGUNSTIC SYSTEM

LANGUAGE EXECUTIVE

X

SEMANTIC

DOMAIN MODEL REPRESENTATION

Y

DATA ACCESS SYSTEM

DATABASE MODEL

i

QUERY GENERATOR

FORMAL DATABASE
QUERY

i

EXTERNAL DATABASE
MANAGEMENT SYSTEM

FORMATTED ANSWER

FIGURE 1 SYSTEM ARCHITECTURE

10

Semantic rules are used to map syntactic structures into formal
representations of the semantic relationships they express. A
representation of the semantic structure of a sentence 1is needed, in
addition to a representation of the syntactic structure, because
identical syntactic structures can encode different semantic

relationships. Thus, the two sentences,

John paild Mary for the book.
John pald five dollars for the book.

have the same structure syntactically, but the first sentence says
something very different about Mary than the second sentence says about

five dollars.

The lexicon contains information abaut the syntactic and semantic
roles played by particular words. For the words in the current example,
the syntactic information would include the faets that '"John" and "Mary"
are proper nouns, that "book™ is a common noun, and that "pay" is a verb
that can take as many as two objects, plus a "for" prepositional phrase.
The semantic information would specify that "pay" refers to a relation
among a purchaser, a seller, a thing purchased, and an amount paid; and
that 1f either the seller or the amount of money is omitted, the other

can be the referent of the noun phrase immediately following the verb.

To construct the correct semantic representation, the linguistic
system must also draw upon knowledge about objects, classes of objects,
and relations in the domain of discourse.® This collection of
information is often called '"the domain model." 1In systems for database
retrieval; the domain model is wusually quite simple. It generally
. contains information about what classes specific objects belong to, what
classes are subsets of a given class, and among what classes of objects
a given relation may hold. For instance, for a system to interpret the

t "

examples involving "pay' properly, the domain model would have to
include the information that the seller must be a person (actual or
legal) and the amount paid must be an amount of money, plus the

* We saw this previously when we discussed the example '"Time flies like
an arrow."”

11

information that Mary is a person and that five dollars 1s an amount of
money. Without this information, it 1s impossible for the system to
choose between the alternative interpretations the syntactic forms

permit.

The data access system generates formal database queries from
semantic representations of natural-language querles. To do thils, it
needs a model of the way 1n which Information about the objects,
classes, and relatioms included in the domain model is represented in
the database., We will call this information the database model. In
addition, the data access system needs information from the domain model
itself, because the files and fields in the database may not correspond
directly to the structure of objects, classes, and relations mentioned
in the semantlic¢ representation of the query. ¥For ianstance, if
information about salaried and hourly employees 1s kept in different
files, the system will be umnable to answer a query about programmers or
secretaries unless it knows whether they are salaried or hourly. This
night not be explicit In the semantlc representation ;f the query, but

1t should be stored in the domain model.

This last point turns out to be more important than it might first
appear. A database can be thought of as embodying a particular view of
part of the world. That view is implicit in the way the information in
the database is organized into files, records, and fields. The user, on
the other hand, may have a view of the world that diverpges considerably
from the view implicit in the database. For instance, if information
about salaried and hourly employees 1is stored in separate files, the
salaried/hourly distinction will seem to be a major division between
parts of the world. In a sense, the database management system will be
unable to "think about" employees without thinking of them as either
salaried or hourly. To a user, however, this distinction may be of no
consequence at all. The data access component must compensate for such
differences in world view between the user and the system. In this case
i1t is relatively simple to divide what the user views as a single cldss

of entities into the two subelasses that the database recognizes; the

12

kind of information represented in the domain model is sufficient for
that. We will see later, though, that the reconciling of differences in

world view can be much more difficult.

cC. Types of Systems: Special-Purpose and General-Purpose

The system architecture just presented provides an overall
framework for database retrieval systems, but within that framework
systems may differ in many ways. One of the most important differences
among systems is whether they are designed for a specific domain and a
specific database or for essentially general-purpose application. If a
general-purpose system 1s desired, the linguistic component of the
system should obviously be as domain—-independent as possible. On the
other hand, 1if the system is intended to accept queries about one domain
only and retrieve information from a single database, many shortcuts can
be taken to achieve higher performance at lower cost. In this section
we will examine the differences between speclal-pupose and general-

purpose systems, comparing their relative advantages and disadvantages.

1. Special-Purpose Systems

To date, almost all the successful demonstrations of natural-~-
language access to databases have employed special-pu;pose systems.
These systems achieve high performance by encoding directly in their
syntactic and semantic rules much of the information that would be in
the domain model and database model in a more general system. Let us
see how such a system might answer the query, '"Who manages the sales
departmenﬁ?" given a database containing a DEPARTMENT file with
DEPT_NAME and MANAGER fields.

The syntactic and semantic rules of the system will be
combined into a single set of rules, which we will call simply "the
grammar." The part of the grammar and lexicon needed to handle "Who
manages the sales department?" might be as shown in Figure 2. The
symbols in angle brackets represent syntactic categories. The domain-

specific character of the system 18 evident from the fact that

13

@

{SENTENCE> => <{PRESENT> <ATTRIBUTE> <DEPARTMENT>;
{DB (SUBST GENVAR "%~
{ ' <DEPARTMENT> <ATTRIBUTE>")))

<PRESENT> => who

{ATTRIBUTE> => <ATTRNAME>;
"RETURN <ATTRNAME>.*’

{DEPARTMENT> => the <DEPNAME> department;
‘FOR EACH * IN DEPARTMENT FILE
WITH DEPT NAME.* = ‘<DEPNAME>" *

manages —-— <ATTRNAME>; ‘MANAGER’

sales —-- <DEPNAME>; ’‘SALES’
Figure 2 Grammar and Lexicon for a Speclal-Purpose System

{DEPARTMENT> 1s a syntactic category, but "noun phrase” and "verb
phrase'” are not. Each pgrammar rule specifies for some syntactic
category one of the linguistic patterns that belong to the category and
the semantic interpretation of that pattefn as a member of the category.
Each lexical entry specifies for some content word the syntactic
category 1t belongs to and its semantlc interpretation as a member of
that category. In each case, the two kinds of information—- syntactic

and semantlic—-are separated by a semicolon.

The syntactic component of a grammar rule consists gimply of a
sequence of syntactic category symbols and words that the phrase to
which the rule is applied must match. Figure 3 presents the syntéctic
analysis of "Who manages the sales department?"” according to this
grammar and lexicon. The sentence is decomposed into three phrases in
the categories <PRESENT>, <ATTRIBUTE>», and <DEPARTMENT>. The <PRESENT>
phrase consists of the word 'who." The <ATTRIBUTE> phrase is further
reduced to <ATTRNAME> which, according to the lexicon, is the category
of the word "manages." The <(DEPARTMENT> phrase is formed from the word
"the," a <DEPNAME>, and the word '"department.” The <DEPNAME> in this
case must be the word "sales,”" which is also consistent with the

lexicon.

14

<SENTENCE>
|

/ / \
<PRESENT> <ATTRIBUTE> <{DEPARTMENT>
| I | —_
I { / / \
{ <ATTRNAME> | <DEPNAME> |
I I I | |
| I | | I
Who manages the sales department

Figure 3 Syntactic Analysis in a Special-Purpose System

This analysis imposes relatively little syntactic structure on
the sentence, and what structure it does 1lmpose has much more to do with
the domain and the database than with standard linguistic concepts. The
degree to which the structure of the database has shaped the grammar
should be noted. If Smith manages the sales department, that seems to
be just as much a fact about Smith as about the sales department. The
grammar, however, treats a manager as an attribute of a department
rather than vice versa, because that 1Is how the database is organized.
If, instead of a DEPARTMENT file, the database had a MANAGER file with a
DEPARTMENT field, the syntactic analysis of the sentence might be quite
different.

The semantic components of our grammar rules consist of (1)
fragments of formal database query language (enclosed by single quotes)
intoe which the semantic interpretations of subphrases (indicated by
syntactic category symbols) are to be substituted, and (2) procedure
calls to manipulate these fragments. TFigure 4 shows the derivation of
the semantic analysis for the current example. This is much wmore
complex than the syntactic analysis and is really "where the action is"
in this type of system. The semantic interpretation of '"manages'" as an
<ATTRNAME> is the string “MANAGER’, which on reinterpretation as an
<ATTRIBUTE> 1is incorporated in the string ‘RETURN MANAGER.*'. As a
{DEPNAME>, "sales" is interpreted as the string ‘SALES’, which, when
analyzed as part of a <DEPARTMENT> phrase, is incorporated in the string

15

“FOR EACH * IN DEPARTMENT FILE
WITH DEPT NAME.* = “SALES"’.

The semantic rule for <{SENTENCE> concatenates this with
‘RETURN MANAGER.*’, invokes the procedure GENVAR to produce a new
variable name {say “¥°), and calls SUBST to substitute "X’ for the dummy

variable “*’. This produces

‘FOR EACH X IN DEPARTMENT FILE
WITH DEPT NAME.X = “SALES’
RETURN MANAGER.X’ s

which is handed off to the database management system by the procedure

DB.

FOR EACH X IN DEPARTMENT FILE
WITH DEPT NAME.X = ‘SALES’
RETURN MANAGER.X

/ / \
] | FOR EACH * IN DEPARTMENT FILE
| "RETURN MANAGER,.*’ WITH DEPT NAME.* = "SALES""
I ! 1
! | / / \
1 ‘MANAGER’ | "SALES’ |
I I ! | I
I !] I I
Who manages the sales department

Figure 4 Semantic Analysis in a Special-Purpose System

-Looking back at Figure 1, we can see that this kind of
speclal-purpose system does not really exhibit the clear separation of
functions and knowledge laid out in our system architecture. The domain
model has been incorporated into the grammar and lexicon by having
things like <DEPARTMENT> and <ATTRIBUTE> as syntactic categories; the
database model has been incorporated into the semantic rules by making
them build and execute formal database queries. This renders the data

access system almost empty, except perhaps for a translator to compile

16

the nonprocedural database query produced by the linguistic system into

a procedural query to be executed by the external database management

system.

Special—-purpose systems of this kind have both advantages and
disadvantages. On the positive side, they can be finely tuned to a
specific application and a specific database. The particular linguistic
expressions the user wants can readily be incorporated without a
comprehensive analysis of their syntactic and semantic properties.
Besides, these systems usually require fewer computational resources
than more general systems, as they do not "waste time" looking for
interpretations of a query that cannot be answered because the database

lacks the required information.

On the negative side, this type of system suffers from uneven
syntactic coverage. Since standard linguistic categories are not
represented in the grammar, the linguistic generalizations that depend
on them are not captured. In grammars that use the concepts "verb

' the relationship between active and passive

phrase” and '"moun phrase,'
sentences ("Smith manages the sales department." / "The sales
department is managed by Smith.") is usually encoded in just a few
rules. In the special-purpose systems we have been discussing, however,
there may be many rules in which the active/passive distinction shows

its effects. Inevitably some will be missed.

A second problem with these systems is that, by consolidating
what were originally different levels of representation and different
knowledge sources in our system architecture, they run roughshod over
the distinctions these were introduced to preserve. Two natural=-
language queries with the same semantic structure may correspond to
different types of database queries. In these systems, the queries
would be forced to have different semantiec representations. Similarly,
we noted that two sentences with the same syntactic structure can have
different semantic structures—-but since each syntactic rule has a
single corresponding semantic rule, the sentences must be treated as 1f

they were different syntactically in order to treat them as different

17

semantically. Because all lower level distinctions must be reflected at
higher levels, there can be a veritable explosion 1in the number of

grammar rules that have to be produced.

A related point is that, since the semantic rules manipulate
only fragments of database queries, the system behaves as if the user is
actually talking about the database-—-files, records, and fields—-rather
than its subject--departments and managers. Thus, the system makes no
distinction between ascertaining what information the user wants and
determining how to get it from the database. The system must interpret
the user’s queries as if there were no difference between his view of

the world and that of the database.

Finally, the most seriocus disadvantage of special-purpose
systems is they are not transportable to new applidations. Extensive
reprogramming may be required to change domains, or even to change
databases within the same domain. Furthermore, this is programming that
requires an unusual combination of skills. A person needs considerable
knowledge of both natural-language syntax and semantics, in addition to
programming, to produce a system that performs satisfactorily.
Currently such people can be found only in a handful of research

laboratories.

2. General—-Purpose Systems

The most serious disadvantages of special-purpose systems can
be overcome by adhering more closely to the system architecture
described in Section IV-B, with its domain-independent syntactic and
semantic rules. Using such a system, we could change domains by
changing only the lexicon, domain model, and database model. Since this
information 1s much simpler in form than the syntactic and semantic
rules, it can be put into the system by means of '"canned" acquisition
procedures. This would virtually eliminate the need for reprogramming
to change domains or databases. As yet, no system offering this degree
of flexibility has been developed to the point of being a practical
tool, but omne is currently being implemented at the SRI Artificial

18

Intelligence Center. We expect that within two to four years this
system {called TEAM) will reach the stage of development currently

exhibited by special-purpose systems.

In a general-purpose system the question, "Who manages the
sales department?" would receive a syntactic analysis similar to that
shown in Figure 5. The details need not concern us, but it should be
noted that the syntactic categories are abstract, domain-independent
concepts like VP (verb phrase), NP (noun phrase), V (verb) and N (noun).
Thus, the same syntactic rules used to analyze this sentence would be
able to parse '"Who commands the U.S. ship?" or "What determines the

blood count?" A change of domains need not require any changes in the

grammart.
5
i
/ \
WHNP VP
| I_ _
| / \
| v NP
[I |
[| / \
| | DET NOMHD
[I I l___
| | f / \
I I | N N
I I I I I
Who manages the sales department

Figure 5 Syntactic Analysis in a General-Purpose System

The semantic representation for "Who manages the sales

department?" might look like

(WHAT X (PERSON X)
(MANAGE X (THE Y (DEPARTMENT Y)
(NAME-OF Y SALES))))

(This can be read as "What person X is such that X manages the

department Y, such that the name of Y is sales?") The symbols PERSON,

19

MANAGE, DEPARTMENT, NAME-OF, and SALES would represent cobjects, classes,
and relations in the domain model, not files or fields in the database.
MANAGE is treated here simply as a relation between a PERSON and a
DEPARTMENT. There is no presumption either that a manager is an
attribute of a department or that a department 1is an attribute of a
manager; whichever way the database 1s set up can be accommodated

equally well,

All that remains at this point is to translate the semantic
representation of the user’s query into an equivalent formulation in
terms of files and fields in the database. For the current example,
this is quite straightforward. In the database model it would be
recorded that X manages Y, just in case there is a record in the
DEPARTMENT file, where the MANAGER field is the name of X and the
DEPT NAME field is the name of Y. This can be represented in a simple

data structure such as

(MANAGE
(FILE DEPARTMENT)
(FIELDS
(ARG] MANAGER)
(ARG2 DEPT NAME)))

This would mean that information about the relation MANAGE is stored in
the DEPARTMENT file, with the first argument of MANAGE stored in the
MANAGER field and the second argument stored in the DEPT NAME field.

A simple data structure like this works only as long as the
relation the user talks about is represented directly by some subset of
the fields of a file (a projection of the file, to use database jargon),
but straightforward extensions will handle other cases as well. For
example, if a programmer is an employee whosgse job code is “PROG’, this
could be expressed by putting a restriction on the FILE attribute in the

data structure:

(PROGRAMMER
(FILE EMPLOYEE (JOB CODE = ‘PROG’))
(FIELDS (ARGl EMP NAME)))

20

In this case, programmers are represented by records in the EMPLOYEE
file, where the value of the JOB CODE field is 'PROG’, and the field
that refers to the programmer himself is EMP_ NAME.

We could go on elaborating ways of handling various types of
mappings between the domain model and the database, but it should

suffice to say that any mapping can be handled that permits a domain

model concept to be defined in terms of concepts explicitly represented

in the database. For instance, if we have a database that includes data
both on occupations and family relationships, we could define the -
concept of PROUD PARENT to be the MOTHER or FATHER of at at least one
PERSON whose OCCUPATION is either ‘DOCTOR’ or ‘LAWYER'.

A general-purpose system of this type, therefore, addresses
all the major deficiencies of the special-purpose systems. If it has a
good, general grammar of the language, it will have much better coverage
of syntactic patterns. By allowing syntactic structures, semantic
structures, and formal database queries to be more independent, it
avoids unecessary preoliferation of syntactic and semantic rules, and it
makes differences between the user’s and the database’s views of the
world easier to deal with. Finally, and perhaps most importantly, it
greatly facilitates transportabllity by isolating domain—- and database-

dependent information in the domain model, database model, and lexicon.

These benefits are not attained without cost, however.
Because systems of this type will be more gemeral, they will also be
larger and slower than specilal-purpose systems. The grammar will have
to allow for syntactic constructions that may not arise in talking about
a particular domain. The extra grammar rules will take up memory space
and consume executlon time in looking for syntactic patterns that do not
occur. Furthermore, in special-purpose systems a lot of '"semantic
filtering" is done by the syntactic rules, while in general-purpose
systems this process 1s delayed——another cause of longer execution
times. A second cost of generality is reduced flexibility. The grammar
rules tend to be much less interdependent in special-purpose systems.

If a new linguistic pattern is introduced, there will typically be fewer

21

interactions with other rules to take into account than in a tightly
structured general—-purpose grammar. Adding new linguistic forms to a
general-purpose system requires much more careful syntactic and semantic

analysis.

3. Long-Term Research

Although the kind of general-purpose system just described
promises to be a significant improvement over existing special-purpose
systems, there are important problems it leaves unresolved.: Two of
these deserve closer examination. The first is how to allow more
complex relationships between the domain model and the database. As we
pointed out, the simple sort of database model we described requires
that all domain concepts be definable in terms of concepts explicitly
repregented in the database. From the user’s point of view, however, it
makes much more sense to define the meaning of files and fields in the

database in terms of domain-model (i.e., his) concepts.

This is especially clear in the case of what we might call
"feature fields." These are fields representing some complex property,

" or "false." For example, in one

with values that simply mean "true
database we have had to deal with at SRI, there is a file SHIP with a
field DOCTOR whose value is ‘D’ if the ship in question has a doctor on
board. The problem is that, if the fundamental, or "atomic" concepts in
the domain model correspond roughly to single natural-language words,
then "having a doctor on board" will not be one of them. Rather, it
will be a complex property involving the class DOCTOR and the relation
ON-BOARD. The semantic representation of this property might be

something like

X such that
(SOME Y (DOCTOR Y)
(ON-BOARD Y X))

(to be read as, "X such that there is some doctor Y such that Y is on

board X.")

22

We have been assuming that information in the database model
is attached to individual atomic concepts (recall MANAGE and
PROGRAMMER). In this case, however, we would have to attach the
information to a complex expression. Even this would not completely
solve the problem. Suppose we also had a NURSE field which means "has a
nurse on board.” Whether or not a ship possesses the property "has a
doctor or nurse on board" would then be derivable from the database.
However,'if information in the database model is attached only to "has a
" doctor on board" and "has a nurse on board,” then to make the connection

the system would have to recognize the logical equivalence of

X such that
(SOME Y (CR (DOCTOR Y)
(NURSE Y))
(ON-BOARD Y X))

("X such that there is some doctor or nurse Y such that Y is on board

X.") and

X such that
(OR (SOME Y (DOCTOR Y)
(ON-BOARD Y X))
(SOME Z (NURSE Z)
(ON-BOARD Z X)))

("X such that either there is some doctor Y such that Y is on board X,
or there is some nurse Z such that Z is on board X.") The point is that
the latter expression explicitly contains representations of "has a
doctor on board" and "has a nurse on board," whereas the former does
not. To be able to answer the question, the system must reformulate it

in terms of concepts that it knows how to connect to the database.

It should be increasingly clear that this 1s an open-ended
problem. We are asking the system not only to retrieve information that
is explicitly stored in the database, but also to tell us whatever can
be inferred from that information. On the basis of knowing about
"doctors on board™ and "nurses on board," we might like the system to

give us at least partial answers to questions about "surgeouns on board"

23

or "medical personnel on board," or even "doctors within 100 miles" (by
inferring that, if a ship with a doector on board is within 100 miles, so

is the doctor himself).

For a system to answer questions such as these, it needs more
than the simple sort of data access system we have been imagining; it
needs a full-fledged deductive—reasoning system. Progress has been made
on this problem in artificial-intelligence research laboratories [4],
but practical systems of any substantial generality are still a long way"
off.

The second major problem left untouched by systems currentlf
operational or under development 1s that, although they can engage in
repeated exchanges of questions and answers, they cannot conduct real

conversations. These systems treat each question as an isclated event;

no attempt is made to build up a context of information as to what is
being talked about, what the user knows, or what he is trying to do. At
times this has almost comical results. Suppose that a company has many
employees named Jones, but only one who is a programmer. If a user
asks, '"Who are the programmers?"” and gets back the list "Jones, Smith,
and Johnson," and then follows this exchange with "How much does Jones
earn?"” he is likely to get a response such as "There are 23 employees
named Jones; which one do you mean?" In context, it is clear that the
user is talking about Jones the programmer, but the system has no notion

that the "conversation" is about programmers.

While the more obvious failures, as in this example, may be
avoided by simple heuristics (such as checking the preceding answer), in
general the effects of conversational context on interpretation can be
much more subtle. The correct interpretation of what the user says
often depends on information derivable from the preceding discourse as
to how much he knows and what he is trying to do. For instance the
question, "Is someone assigned to every task?" is ambiguous; it could
be asking whether any single person is assigned to all tasks, or whether
each task has at least one person assigned to it. If the question is

asked immediately after "Is anyone assigned to more than one task?" has

24

been answered negatively, however, the first interpretation is extremely
unlikely. We would like a system to be able to infer that the user
knows that no person is assigned to more than one task; so no person is
assigned to all tasks. If the system then assumes that the user is more
likely to be asking a question that he does not know the answer to, it
will arrive at the correct interpretation. Knowing a person’s
intentions can also aid in interpretation. If a user asks a travel
information system '"Is Rome closer to London than Madrid?", he could
mean "Is Rome closer to London than to Madrid?" or "Is Rome closer to
London than Madrid is?" If he could preface question with the
explanation, "I want to vacation in either Italy or Spain after I finish
my business in England,” and the system understood what that implied, it

would be clear that he meant the latter.

To handle problems like this, a system needs an additional
model--a mocdel of the conversation. The model would have to include
what the speaker is talking about, what he knows, and what he wants.
How to infer this information from the conversation, how to represent it
in a model, and how to reason with it and use it to interpret discourse
are all being actively studied in computational linguistics and
artificial intelligence [5] [6] [7]. ©Possible solutions to these

problems are beginning to emerge, but much work remains to be done.

25

V Prospects for Practical Systems

While the details of technical problems and their solutions are
interesting in their own right, in a discussion of practical natural-
language processing the final question has to be, when will this
technology actually be available and what will it cost? For special-
purpose systems, the answer to the availability question is essentially
"now." The technology involved can be had "off the shelf" from several
research laboratories; all that 1s really necessary 1s a serious
engineering effort to transform it into a marketable package. At least
one system, with somewhat limited capabilities, is already being offered
as a commercial product (INTELLECT from Artificial Intelligence Corp.).

The costs of using such a system must include both the effort to
develop a particular application and the investment in computational
resources needed to support it. For special purpose-systems the
development costs are rather higﬁ, because a new grammar has to be
written for every application. Based on the experience with LADDER, six
man-months to two man—years seems to be a reasonable estimate, depending
on the experience of the implementers and the scope of the application.
Interfacing to a database with ten files and one hundred fields would be

congidered a moderately large effort by these standards.

As regards computational costs, the LADDER system currently runs on
a time—shared DECSYSTEM-2060 computer with six megabytes of physical
memory, and one megabyte of virtual address space. On this system
LADDER takes one to two seconds of machine time to produce a formal
database query from an English input. (The database management system
itself is accessed on another machine over a network.) The system takes
up almost the entire address space of the machine, so a significantly
larger system would have to be divided into several processes or

implemented on a machine with a larger virtual memory. The DECSYSTEM-

26

2060 is an approximately S$l-million facility, but it appears that
smaller machines will soon be available that would support one to four
users of a LADDER-like system for about $50,000. In the very near
future, consequently, the cost of supplying one user with enough
computational power to support this type of system should be about the

same as the present cost of a word-processing workstation.

It will probably be two to four years before general-purpose
systems of the sort that seem currently feasible are ready for
conmerclal development. When they do become available, the effort
required to create a new application system should be dramatically
shortened--on the order of nman-weeks to man—months, rather than man-
months to man~years. The major uncertainty surrounding this estimate is
whether the automatic acquisition routines will be sufficient to create
a satisfactory system, or whether additional cutomizing will be
necegssary. The computational resources required will be significantly
greater than with special-purpose systems. Current prototypes run three
to five times slower than comparable special-purpeose systems and use at
least twice as much memory. It should be kept in mind, however, that as
hardware costs continue to decline this factor will become less

significant.

Finally, we can only speculate about the emergence of systems that
have some of the capabilities described as long—-term research problems.
It seems safe to say it will be at least ten years before those problems
are solved for practical applications. If such systems are eventually
developed, they should provide the user with a much more accommodating
environment, and their need for customizing by an expert programmer
should asymptotically approach zero. The computational resources
required, however, will probably be staggering by today’s standards, so
we must hope that the present trend of diminishing hardware costs
continues. The computation needed to reason explicitly about how to
access a database, as well as about what the user knows and wants to do,
will probably far outstrip the computation needed for more narrowly
defined linguistic processing. But this should not be surprising;

people also find it much easier to talk than to think.

27

REFERENCES

B. T. Lowerre and D. R. Reddy, "The Harpy Speech Understanding
System," in Trends in Speech Recognition, W. E. Lea, ed., Chapter
15 (Prentice-Hall, Englewood Cliffs, New Jersey, 1979).

G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum,
"Developing a Natural Language Interface to Complex Data,'" ACM
Transactions on Database Systems, Vol. 3, No. 2 (June 1978).

G. G. Hendrix, "The LIFER Manual: A Guide to Building Practical
Natural Language Interfaces," SRI Artificial Intelligence Center
Technical Note 138, Stanford Research Institute, Menlo Park,
California (February 1977).

R. C. Moore, 'Automatic Deduction for Commonsense Reasoning: An
Overview," SRI Artificial Intelligence Center Technical Note 239,
SRI International, Menlo Park, California (April 1981).

B. Grosz, "Focusing and Description in Natural Language Dialogues,”
in Elements of Discourse Understanding: Proceedings of a Workshop
on Computational Agpects of Linguistic Structure and Discourse

Setting, A. K. Joshi, 1.'§Eg, and B. L. Webber, eds. (Cambridge
University Press, Cambridge, England, 1981).

R. C. Moore, "Reasoning About Knowledge and Action," SRI Artificial
Intelligence Center Technical Note 191, SRI Intermational, Menlo
Park, California (October 1980).

J. Allen and C. R. Perrault, "Participating in Dialogues:
Understanding Via Plan Deduction," Proceedings, Second National
Conference, Canadian Society for Computational Studies of
Intelligence, Toronto, Canada, pp. 214-223 (19-21 July 1978),

28

